清华大学在支持片上学习的忆阻器存算一体芯片领域取得重大突破
中国教育新闻网
2023-10-12 05:45:13

原标题:清华大学在支持片上学习的忆阻器存算一体芯片领域取得重大突破

中国教育报-中国教育新闻网讯(记者 董鲁皖龙)当前,生成式人工智能已引爆新一轮智能革命的发展浪潮,高算力、高能效芯片作为算力的具体载体,已成为驱动本轮智能革命发展的核心底座。

面向传统存算分离架构制约算力提升的重大挑战,清华大学集成电路学院教授吴华强、副教授高滨聚焦忆阻器存算一体技术研究,探索实现计算机系统新范式。忆阻器存算一体技术从底层器件、电路架构和计算理论全面颠覆了冯·诺依曼传统计算架构,可实现算力和能效的跨越式提升,同时,该技术还可利用底层器件的学习特性,支持实时片上学习,赋能基于本地学习的边缘训练新场景。当前国际上的相关研究主要集中在忆阻器阵列层面的学习功能演示,然而实现全系统集成的、支持高效片上学习的忆阻器芯片仍面临较大挑战,至今还未实现,主要在于传统的反向传播训练算法所要求的高精度权重更新方式与忆阻器实际特性的适配性较差。

为解决上述难题,课题组基于存算一体计算范式,创造性提出适配忆阻器存算一体实现高效片上学习的新型通用算法和架构(STELLAR),有效实现大规模模拟型忆阻器阵列与CMOS的单片三维集成,通过算法、架构、集成方式的全流程协同创新,研制出全球首颗全系统集成的、支持高效片上学习的忆阻器存算一体芯片。该芯片包含支持完整片上学习所必需的全部电路模块,成功完成图像分类、语音识别和控制任务等多种片上增量学习功能验证,展示出高适应性、高能效、高通用性、高准确率等特点,有效强化了智能设备在实际应用场景下的学习适应能力。相同任务下,该芯片实现片上学习的能耗仅为先进工艺下专用集成电路(ASIC)系统的3%,展现出卓越的能效优势,极具满足人工智能时代高算力需求的应用潜力,为突破冯·诺依曼传统计算架构下的能效瓶颈提供了一种创新发展路径。

近日,该研究成果以“面向边缘学习的全集成类脑忆阻器芯片”为题在线发表在《科学》(Science)上。

作者:董鲁皖龙

相关内容

热门资讯

更向前一步的UGC生态:当创作... 今年7月12日,我在杭州参加了《蛋仔派对》第三届创作者大会。那次大会给我留下了很多深刻的印象,其中有...
极智嘉交付波兰智能仓项目,欧洲... 格隆汇12月16日|近日,全球仓储机器人领军企业极智嘉(2590.HK)携手全球物流服务商 Arva...
赛陆再添重磅:国产测序仪获批N... 2025年12月12日,赛陆自主研发的全国产小型快速基因测序仪Saluseq Nimbo(简称“Ni...
分析教程!微信炸金花如何买房卡... 微信游戏中心:炸金花房卡,添加微信【82606316】,进入游戏中心或相关小程序,搜索“微信炸金花房...
触乐怪话:年终总结之小众游戏篇 触乐怪话,每天胡侃和游戏有关的屁事、鬼事、新鲜事。 图/小罗 最近很多人争今年是不是个游戏大年。...