我国科学家构建新型类脑网络 构筑人工智能与神经科学的桥梁
创始人
2024-08-17 01:21:00

记者16日从中国科学院自动化研究所获悉,该所李国齐研究员、徐波研究员团队联合清华大学、北京大学等,提出“基于内生复杂性”的类脑神经元模型构建方法,改善传统模型计算资源消耗问题,为有效利用神经科学发展人工智能提供了示例,相关研究发表于《自然·计算科学》。

构建更加通用的人工智能,让模型具有更加广泛和通用的认知能力,是当前人工智能领域发展的重要目标。

“目前流行的大模型路径是基于尺度定律构建更大、更深和更宽的神经网络,可称之为‘基于外生复杂性’的通用智能实现方法。”李国齐说,这一路径面临着计算资源及能源消耗难以为继、可解释性不足等问题。

另外一方面,人类大脑有1000亿神经元,1000万亿左右的突触连接,每个神经元具有丰富且形态各异的内部结构,但功耗仅20瓦左右。因此借鉴大脑神经元动力学特性,向内丰富神经元结构探索通用智能潜力巨大,这条路径可称之为“基于内生复杂性”的通用智能实现方法。

李国齐表示,实验结果验证了内生复杂性模型在处理复杂任务时的有效性和可靠性,为将神经科学的复杂动力学特性融入人工智能提供新方法和理论支持,也为实际应用中的人工智能模型优化和性能提升提供可行的解决方案。

目前,研究团队已开展进一步研究,有望提升大模型计算效率与任务处理能力,实现在实际应用场景中的快速落地。(记者宋晨)

相关内容

热门资讯

微信小程序的开发流程 微信小程序的开发流程已经非常成熟,特别是在云开发(Cloudbase)和AI辅助代码的加持下,从构思...
和合信息取得基于VLN大模型的... 国家知识产权局信息显示,山东和合信息科技有限公司取得一项名为“一种基于VLN大模型的厨房服务机器人操...
安克创新获得实用新型专利授权:... 证券之星消息,根据天眼查APP数据显示安克创新(300866)新获得一项实用新型专利授权,专利名为“...
美国亚马逊公司拟下周启动第二轮... 当地时间1月23日,记者获悉,美国电子商务平台亚马逊公司计划于下周启动第二轮裁员,作为其整体削减约3...
推动氢能升级为“能源载体” 在新一轮科技革命和产业变革背景下,氢能已成为推动世界能源转型与绿色发展的新动力。此前召开的2026年...