中国青年报客户端讯(丁超逸 殷梦昊 中青报·中青网记者 王烨捷)日前,复旦大学化学系董安钢、李同涛团队,联合高分子科学系李剑锋团队及新加坡南洋理工大学倪冉团队在《科学》(Sicence)杂志上发表题为“基于曲率介导的排空力构建纳米颗粒笼目超晶格”的论文。
主要参与者左起分别为李同涛、万思妤、董安钢、李剑锋。受访团队供图
该研究利用凹形纳米颗粒为构建基元,通过调变颗粒的局部曲率来调控颗粒间的排空力,成功实现了笼目晶格(Kagome lattice)等一系列新型超晶格材料的可控构建,为纳米颗粒自组装领域提供了全新的研究范式,有望在催化、能源、功能器件等领域带来创新性应用。
纳米颗粒被认为是“人造原子”,基于其可控组装构筑而成的超晶格(或超晶体)是一类具有晶体对称性的介观凝聚态物质,在能源、催化、力学、光电器件、生物医药等领域具有重要的应用价值。然而,实现超晶格材料的可编程化设计面临一个重要挑战:如何模拟原子成键,驱动颗粒间的选择性识别与方向性结合。
过去,超晶格领域的前沿研究主要由欧美研究团队主导,且大多集中于球形或凸多面体纳米颗粒的研究。复旦大学团队另辟蹊径,提出利用非凸(nonconvex)纳米颗粒为构建基元,并通过调控颗粒的局部曲率,创造出类原子价键特性的颗粒间定向相互作用。
这一原理类似于“锁与钥匙”的关系。复旦大学化学系教授董安钢介绍,团队设计并合成了哑铃形纳米晶,利用其头部与腰部曲率自互补的特点,实现了互锁式长程有序组装。哑铃形颗粒之间的凹凸互补组装模式,犹如钥匙与锁芯之间的精准匹配。
“颗粒凹凸互锁组装模式克服了传统纳米颗粒相互作用难以精准调控的难题,为纳米基元键合方向性的调节提供了前所未有的精度与灵活性。”董安钢说。
通过调控哑铃形纳米颗粒局部曲率设计二维超晶格结构。受访者供图
通过构建一系列新型超晶格结构,团队展示了非凸纳米颗粒作为构建基元的巨大潜力,其中Kagome晶格是最具代表性的超晶格结构。复旦大学化学系青年研究员李同涛介绍,这项研究通过优化合成条件制备了凹度适中的哑铃形颗粒,并基于气液界面组装技术,获得了高质量的二维Kagome超晶格,其单晶区域可达数十平方微米,包含超过10万个凹凸互锁的哑铃形颗粒,“这种精度是传统3D打印和光刻技术难以比拟的,再次展现了纳米自组装技术在物质制备中的优势”。据悉,该Kagome超晶格具有p6对称性,展现出独特的面内手性,有望带来全新的光学性质。
由中凹度哑铃形颗粒自组装而成的手性Kagome晶格。受访团队供图
据悉,纳米颗粒自组装研究涉及化学、物理学、材料学等多个学科的知识和技能。复旦大学化学系董安钢、李同涛团队长期致力于纳米颗粒组装与应用研究,而高分子科学系李剑锋团队则专注于软物质的理论计算。
2021年底,董安钢团队首次发现了Kagome晶格,并意识到超晶格的形成背后可能有着非常奇特的组装原理。随后,董安钢向李剑锋介绍了团队所合成的哑铃状颗粒及实验中所观察到的一些自组装结构。李剑锋随即带领理论团队,针对不同形状的纳米颗粒,进行详细的相图计算。完成理论计算后,李剑锋将结果反馈给实验团队。
复旦大学化学系博士后万思妤、新加坡南洋理工大学博士后夏秀杨为论文共同第一作者,复旦大学化学系董安钢教授、李同涛青年研究员、高分子科学系李剑锋教授以及新加坡南洋理工大学倪冉教授为论文共同通讯作者,复旦大学为本工作的第一完成单位。该研究得到了国家自然科学基金、科技部重点研发计划、上海市科委基础研究领域重点项目、复旦大学“卓学优秀人才”计划等经费的资助。